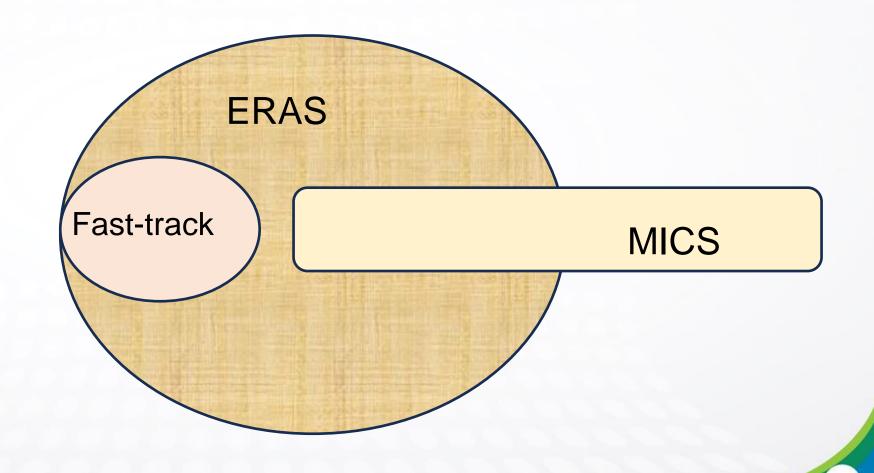


Fast track in VSD closure

Dr. Thao Giang, Heart Center VietNam National Children's Hospital

No conflict of interest


Outline

- Premise for fast track in VSD closure
- Patient's pathway
- Our results & learnt lessons

Premise for fast-track surgery

- Knowledge
- Skill & experience
- Pharmacology
- Instrument
- Leadership
- QI & auditing data
- Proactive team members working toward excellency

Should early extubation be the goal for children after congenital cardiac surgery?

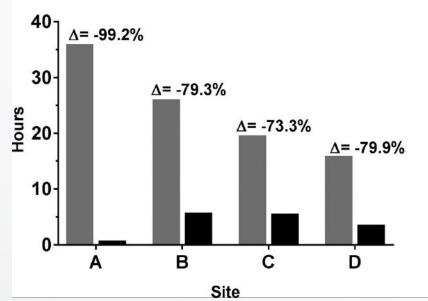
James E. Potts, PhD • Sanjiv K. Gandhi, MD • Show all authors

Open Archive • Published: July 29, 2014 • DOI: https://doi.org/10.1016/j.jtcvs.2014.06.093

613 children (97 neonate)

71% Intra-op Extubation

89% Early Extubation (<24h)


Norwood is only procedure that don't have candidate for EE.

Early extubation strategy was associated with

- ✓ low rates of complications (5.1 per 10 procedures)
- ✓ short lengths of intensive care unit stay (median, 1 day; interquartile range, 1-3)
- ✓ short hospital stays (median, 4 days; interquartile range, 3-6).

Median duration of intubation across sites in the pre- and post-CPG periods

*CPG: Clinical practice guidelines

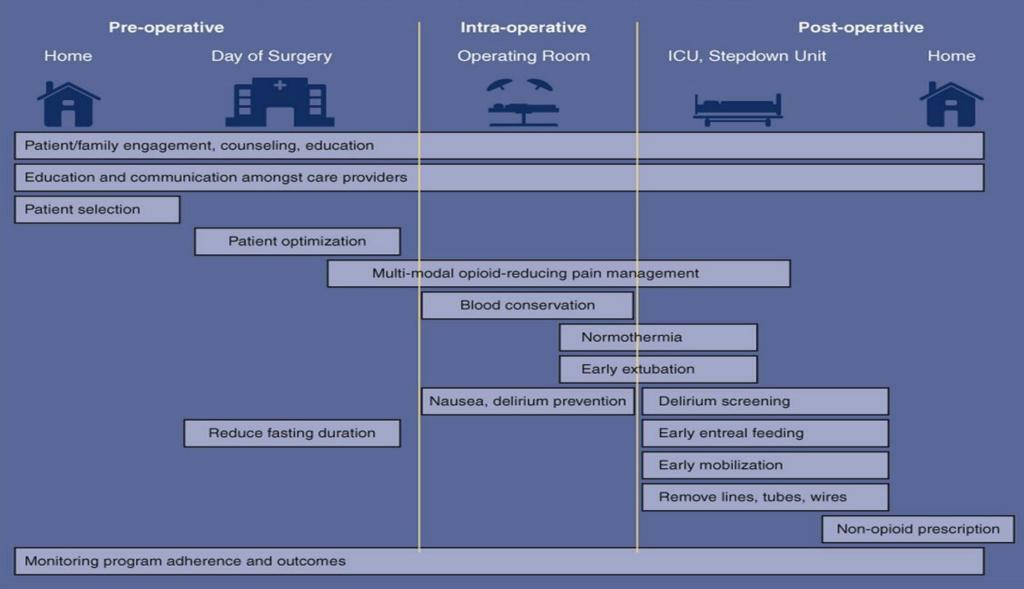
ORIGINAL ARTICLE | CONGENITAL HEART SURGERY | VOLUME 107, ISSUE 5, P1434-1440,

MAY 2019 <u>L</u> Dow

▲ Download Full Issue

Variation in Implementation and Outcomes of Early Extubation Practices After Infant Cardiac Surgery

Pre-CPG Period


Post-CPG Period

Results

A total of 322 patients were included (4 active sites, 1 model site). Patient characteristics were similar across active sites, whereas pre-CPG median time to extubation varied from 15.4 to 35.5 hours. All active sites had a significant post-CPG decline (p < 0.001); however, there was variation in the post-CPG median time to extubation (0.3 to 5.3 hours, p = 0.01) and magnitude of change (-73.3% to -99.2%). Site A achieved the shortest post-CPG time to extubation and had the greatest percentage change. Two sites had significant decreases in medical ICU LOS in TOF patients; no hospital LOS changes were seen. All sites valued the collaborative learning strategy, site visits, CPG flexibility, and had similar core team composition. Site A used several unique strategies: inclusion of other staff and fellows, regular in-person data reviews, additional data collection, and creation of complementary protocols.

Enhanced Recovery in Pediatric Cardiac Surgery

The American Association for Thoracic Surgery Congenital Cardiac Surgery Working Group 2021 consensus document on a comprehensive perioperative approach to enhanced recovery after pediatric cardiac surgery - The Journal of Thoracic and Cardiovascular Surgery Volume 162 Issue 3 Pages 931-954 (September 2021)

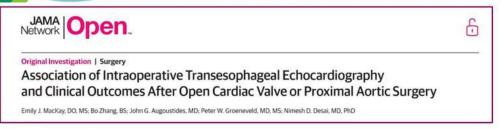
DOI: 10.1016/j.jtcvs.2021.04.072

STUDY PROTOCOL

Open Access

The protocol of Enhanced Recovery After Cardiac Surgery (ERACS) in congenital heart disease: a stepped wedge cluster randomized

Appendix	I. ERAC	strategy	Y
			-


exercise

Phase	Content	Recommendatio disease, a stepped wedge cluster randomized			
Preoperative Strategies	patient education and counseling	explanations of I trial			
	preoperative oral intake of	oral administrati			
	multidimensional carbohydrate	surgery Dou Dou ¹ , Yuan Jia ¹ , Su Yuan ¹ , Yang Wang ² , Yinan Li ¹ , Hongbai Wang ¹ , Jie Ding ¹ , Xie Wu ¹ , Dongyun Bie ¹ ,			
	beverages	Qiao Liu ¹ , Ran An ¹ , Haoqi Yan ¹ and Fuxia Yan ^{1*}			
	sedation	parients' company and intranasai administration of dexmedetomidine 1 to 2 μg·κg· or oral			
	administration midazolam 0.5 mg·kg ⁻¹				
Intraoperative Strategies	continuous infusion of	inject dexmedetomidine intravenously at the rate of 0.2~0.7μg·kg ⁻¹ ·h ⁻¹			
	dexmedetomidine				
	multimodal analgesia	local anesthesia around the incision, or ultrasound-guided nerve block			
	blood conservation	tranexamic acid, cell saver, and use of modified ultrafiltration			
	prevention of postoperative	0.15 mg·kg ⁻¹ dexamethasone or 0.1mg·kg ⁻¹ ondansetron before anesthesia			
	nausea and vomiting				
Postoperative Strategies	early extubation	extubation immediately after surgery or within 6 hours of surgery			
multimodal analgesia goal-directed fluid therapy		oral application of acetaminophen 4 times daily with a total daily dose of 30 mg/kg, ketorolac would			
		be recommended to injected intravenously as needed, with a single dose of 0.5 to 1 mg·kg ⁻¹ .			
		goals (blood pressure, cardiac index, systemic venous oxygen saturation, and so on) to guide clinicians			
		in administering fluids, vasopressors, and inotropes			
	early feeding and physical	drinking can be attempted 2 hours after extubation and sitting or exercising can be attempted 4 hours			

after extubation

Which modalities added value to MICS?

N = 872,936 patients STS

STS ACS database (2011-2019)

	TEE	NO TEE	
30-day mortality	3.81% ▼	5.27%	[0
Stroke or 30-day mortality	5.56% ▼	7.01%	[0
Reoperation or 30-day mortality	7.18%	8.87%	[0

CARDIOVASCULAR ANESTHESIA: EDITED BY KLAUS MARKSTALLER

Transesophageal echocardiography in minimally invasive cardiac surgery

Prempeh, Agya B.A.; Scherman, Jacques; Swanevelder, Justiaan L.

Author Information ⊗

MacK

Outcome

Our VSD patient's pathway

Screening:

Prenatal screening in OBG hospital Occasional field-trips to remoted provinces

Pre-op assessment:

x2 sonography to confirm diagonis

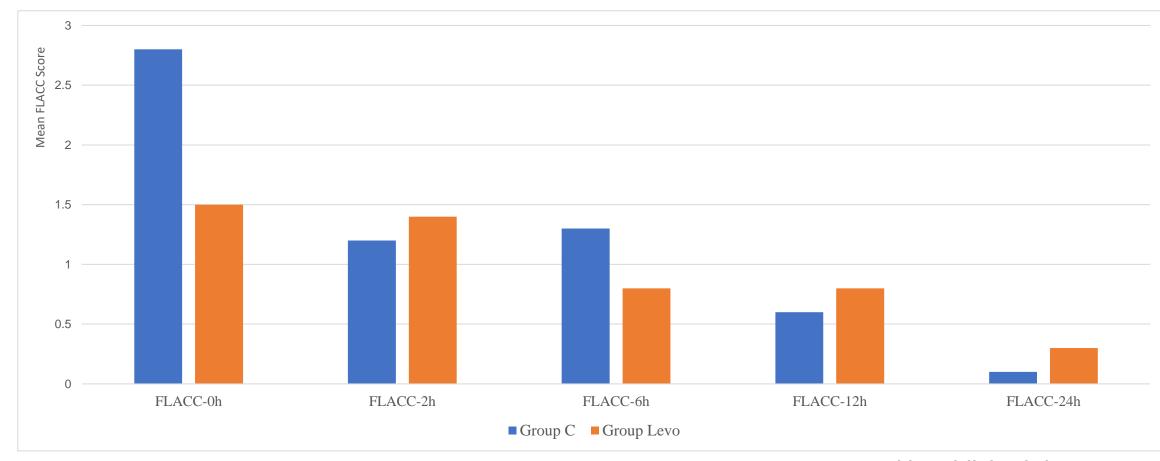
Admission 1 day before surgery & Anesthesia evaluation

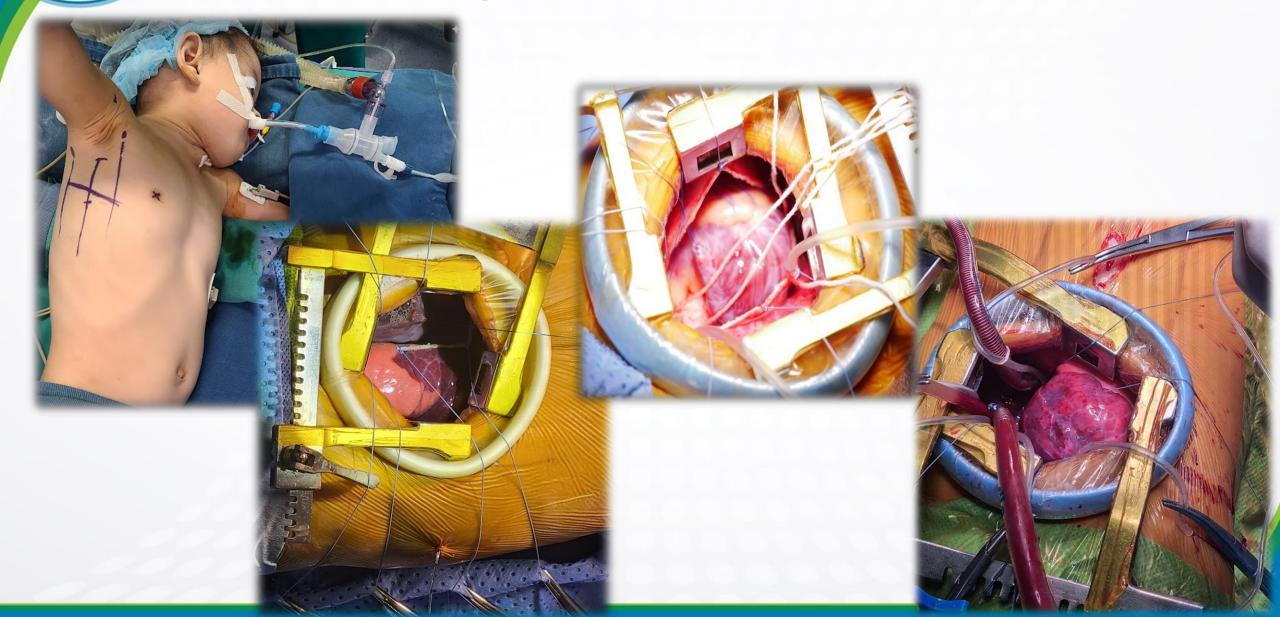
Intra-op: Lung isolation + PVBlock as regional analgesia
 Dexmedetomidine infusion

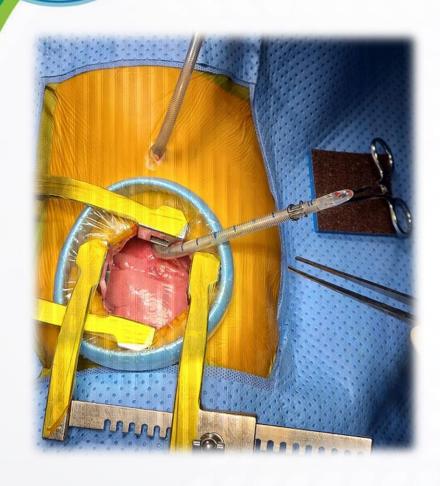
With the technical support from Okayama Hospital

17/8/2019: Our 1st case of VSD closure via right-thoracotomy

Until now >800 cases & getting more popular among patient families


	Criteria		Group		
			Control Group	Levobupivacain Group	р
			(n = 35)	(n = 35)	
	Total Fentanyl Intra-operative (mcg/kg)	± SD	13,9 ± 4,8	3,9 ± 1,5	0,001
	Incidence of rescue Fentanyl at	Skin incision n(%)	29/35(82.9%)	7/35(20,0%)	0,001
		Thoracotomy+ cannulae n(%)	5/35(14.3%)	5/35(14,3%)	1,0
	different phase	During CPB n(%)	13/35(37.1%)	5/35(14,3%)	0,01
		Close skin & Drainage n(%)	0	0	


		Group			
	Criteria		Control Group	Levobupivacain Group	р
			(n = 35)	(n = 35)	
		<1h	1(2,9%)	30(85,7%)	
		1-3.9h	14(40%)	1(2,9%)	
	Time to	4-5.9h	9(25,7%)	4(11,4%)	0.004
	extubation	≥6h	11(31,4%)	0(0%)	0,001
	(h)	± SD	303,9 ± 241,6	54 ± 92,9	


Criteria		Group		
		Control Group	Levobupivacain Group	р
		(n = 35)	(n = 35)	
Total Fentanyl 12h (mcg/kg)	± SD	17,5 ± 4,2	12,7 ± 1,6	<0,001
Time to rescue dose (hours)	± SD	1,2 ± 0,6	2,1 ± 1,4	<0,001
	Min-Max	0,5 - 2,6	0,5 - 6,1	.5,551
Rate of bolus fentanyl in 24h		30	24	<0,001

MINIMALLY INVASIVE SURGICAL REPAIR THROUGH RIGHT VERTICAL INFRA-AXILLARY THORACOTOMY FOR SIMPLE CONGENITAL HEART DEFECTS

Truong NLT, Vinh TQ, Mai NT, Son HT, Duyen MD, Anh DV, Nam NT

Safety and efficacy of this approach for simple CHD repair?

Descriptive, retrospective study

Aug 2019 – Aug 2022

n = 382 41.9]

Median age 16.2 months [IQR: 7.2 -

Median weight 8.8 kg [IQR: 6.5 - 14]

Mean t.XAo: 45.4 ± 19.3 mins

Mean t.bypass 65.6 ± 23.1 mins

Mean t.operation 154,5 ± 29.7 mins

Two early reoperation/ One ECMO

One late reoperation

Morbidities: pleural effusion (0.8%),

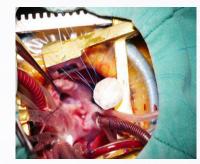
pneumothorax (0.8%)

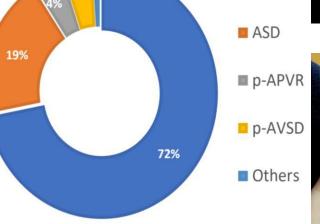
wound infection (1%)

Median follow-up 11.3 months

[IQR: 5.7 - 21.7]

Trivial residual shunt (23; 6%), 100%


NYHA 1



Safe and effective/ a good alternative to median sternotomy and cardiac intervention Excellent cosmetic results

Thank for listening!

